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TECHNIQUES OF TREND ANALYSIS FOR MONTHLY WATER-QUALITY DATA

by 

Robert M. Hirsch, James R. Slack, and Richard A. Smith

ABSTRACT

A set of statistical methods particularly well suited for evaluating time 
series of monthly water-quality data are presented. The Seasonal Kendall Test 
for trend is defined. It is a nonparametric test based on the differences 
between observations in the same month of different years. Under realistic 
stochastic processes (exhibiting seasonality, skewness, and serial correlation) 
it is robust by comparison with the parametric alternative of regression. The 
Seasonal Kendall Slope Estimator, a measure of trend magnitude, is defined. 
It is closely related to the Seasonal Kendall Test. It is an unbiased estimator 
of the slope of a linear trend and in comparison to linear regression has a con­ 
siderably greater precision when the data are log-normally distributed but a 
moderately lesser precision when the data are normal. The flow-adjusted concen­ 
tration is defined as the residual (actual minus the conditional expectation) 
concentration, based on some regression model of concentration as a function of 
river discharge. By testing these flow-adjusted concentration values for trend 
over time, one avoids the problem of identifying trends that are artifacts of 
the sequence of discharges observed. Rather, one is testing for changes in the 
relationship between concentration and discharge.

INTRODUCTION

The problem of testing water-quality monitoring data for trend in time has 
received considerable attention in the last decade (see, for example, Wolman, 
1971; Steele and others, 1974; Lettenmaier, 1977; and Liebetrau, 1979). Recent 
interest in methods of water-quality trend analysis arises for two reasons. 
The first is the intrinsic interest in the question of changing water quality 
arising out of environmental concern and activity. Given legislation which has 
resulted in the expenditure of large sums of public and private money for the 
purpose of water-quality improvement, there is considerable interest in evalua­ 
ting the consequences of these expenditures. The second reason for this interest 
is that only recently has there been a substantial amount of data that is amena­ 
ble to such analysis. It is clear that in order to detect or assess trends it 
is necessary that the data be collected at a given location, using consistent 
collection and measurement techniques on a regular schedule and over a substan­ 
tial number of years. Establishment of large networks of water-quality stations 
has occurred mainly since 1970. Some examples of national water-quality net­ 
works are the U.S. Geological Survey's Benchmark and NASQAN networks (see 
Briggs, 1978).



In this paper we describe procedures suitable for analyzing a large data 
base to identify stations where water-quality characteristics appear to be 
changing monotonically over time and to estimate the rates of change. The 
techniques are not intended for exploring the hypothesis that change has 
occurred at some prespecified time (as a result of known human action, for 
example), but rather for detecting trends over some preselected interval of 
time. It is recognized that the trend may occur as a sudden shift. If the 
time of such a shift were known a priori then these techniques would not be 
the appropriate ones to use. In addition, the techniques do not require com­ 
plete records. The existence of missing values (a common feature of water- 
quality monthly time series) presents no computational or theoretical problem 
for applying the techniques.

Although presented in terms of hypothesis testing, the procedures are 
best viewed as exploratory. They are most appropriately used to identify 
stations where changes are significant or of large magnitude, and to quantify 
these findings. In many cases one may wish to go on from using these tech­ 
niques to explore the data in graphical form and formulate and test specific 
hypotheses about the timing, magnitude or mechanism of change.

The methodology presented here includes three distinct procedures which 
can be used alone or in combination. Examples of their combined use are pre­ 
sented in Smith and others (1981).

The three procedures are:

1. A modified form of Kendall's (1975) tau used as a test for trend. 
This modification is called the Seasonal Kendall Test for trend.

2. A method of estimating trend magnitude which is closely related 
to the Seasonal Kendall Test procedure. This is called the Seasonal 
Kendall Slope Estimator.

3. A method for computing a time series of flow-adjusted concentrations 
(FAC). This FAC time series may then be used to examine, graphically 
or by a formal test (such as the Seasonal Kendall Test), the question 
of whether there has been a change in the relationship between flow 
and concentration over the period of record.

The three techniques are each described, and an example of their appli­ 
cation is shown and, Monte Carlo experiments exploring the characteristics of 
the first two procedures are reported. The data used to illustrate the three 
techniques are the total phosphorus record from a Geological Survey National 
Stream Quality Accounting Network (NASQAN) station on the Klamath River near 
Klamath, California (station number 11-5305.00). The record covers the period 
from January 1972 through October 1979 and has a total of 80 monthly values. 
The average concentration over this record is 0.12 mg/L, the standard deviation 
is 0.17 mg/L, and the coefficient of skewness is 4.0 (see fig. 1).
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The Seasonal Kendall Test for Trend

Mann (1945) described a nonparametric test for randomness against trend. 
The test he described is a particular application of Kendall's test for cor­ 
relation (Kendall, 1938, 1975) commonly known as Kendalls tau. According to

hypothesis of randomness H0 states that the data (xi,...,xn ) are 
identically distributed random variables. The 
a two-sided test is that the distribution of x|< 
j _< n k * j. The test statistic S is defined

Mann the null
a sample of n independent and
alternative hypothesis (Hi) of
and Xj are not identical -V-k,
as

n-1 n
S = 7 £ sgn(xj - X|<)

k=l j=k+l
(1)

where
1 if G > 0

sgn(0) =<{ 0 if 0=0
-1 if 0 < 0

(2)

Note that the statistic T which Mann (1945) discussed is a linear function of 
the statistic S used by Kendall (1975) and used in the present paper. In

n(n-l) 
particular S = 2T -    . Mann shows that under H0 the distribution of T and

hence S is symmetrical, and is normal in the limit as n -» <». Kendall gives 
the mean and variance of S under H 0 given the possibility that there may be ties 
in the x values. [Mann ignores ties but for the no-tie case his results are 
identical to Kendall's.]

E[S] 

Var[S]

= 0

n(n-l)(2n+5) - Z t(t-l)(2t+5)
__________t________ 

18

(3a) 

(3b)

where t is the extent of any given tie (number of x's involved in a given tie)
z 

and t denotes the summation over all ties. (For example, if there were four

ties of two and one tie of three, then | t(t-l) (2t+5) = 4'18 + 1'66 = 138). 
Mann (1945) did not consider ties but his results correspond exactly with 
Kendall's for the no-tie case. Both Mann and Kendall derive the exact distri­ 
bution of S for n _< 10 and show that even for n = 10 the normal approximation 
is excellent, provided one uses a continuity correction of one unit. That is, 
one computes the standard normal variate I by



S-l
; if s > o

Vvar(S) 

Z = ( 0 if S = 0

S+l
, 

VVar(S)
if S < 0

(4)

Thus in a two-sided test for trend, the H0 should be accepted if |Z| < z where
- a/2

a/2
) =a/2, F|\| being the standard normal cumulative distribution function

and a the size of the significance level for the test. A positive value of S 
indicates an "upward trend" (increasing values with time) and a negative value 
of S indicates a "downward trend."

Bradley (1968, p. 288) notes that when this test is used as a test of 
randomness against normal regression alternatives, this test has an asymptotic 
relative efficiency of 0.98 relative to the parametric test based on the 
regression slope coefficient.

If the time-series data of interest are monthly water-quality data then the 
null hypothesis (H 0 ) given above is more restrictive than what one might be 
interested in. Examination of monthly water-quality time series (such as shown 
in fig. 1) suggest very strongly the presence of seasonality. In fact, 127 of 
308 series of monthly total phosphorus concentration data from the U.S. Geo­ 
logical Survey NASQAN program (records of 5 to 8 years in length) show signifi­ 
cant a = 0.05) seasonality, as determined by Kruskal-Wallis multisample test 
for identical populations (Bradley, 1968, p. 129), Similary, 139 of 308 series 
of dissolved solids (residue on evaporation at 180°C) show significant season­ 
ality. These results suggest that seasonality (the existence of different dis­ 
tributions for different times of year) is a common phenomenon.

seasonal but otherwise trend-free

We propose a test, the "Seasonal Kendall" test for trend, which is insen­ 
sitive to the existence of seasonality. The null hypothesis (HQ ) for this 
test is a relaxed form of H0 (which any 
process will violate).

Let X= (X , X ,...,X ) and

» x in .

That is, DC is the entire sample, made 
each subsample X-j

up of subsamples 
the n-j

through X^ (°ne
each month) and each subsample X-j contain the n-j annual values from month i. 
Note that there is no restriction that n-j = n^ , i * n , or that there be a 
value for every year and month combination in the sampling period. However, 
there may be no more than one for each year and month. (A variation on the test 
will be discussed below in which multiple values are possible.) The null hypo­ 
thesis HQ for the Seasonal Kendall Test is that X is a sample of independent



random variables (x-jj's) and that Xj is a subsample of independent and identi­ 
cally distributed random variables i = 1, 2,...,12. The alternative hypothesis 
is that for one or more months the subsample is not distributed identically. 
We define the statistic Sj

nj-1 nj
s i = L I sgn(xjj - x ik ) (5)

k=l j=k+l
i 

Now, under HQ the subsample X^ satifies the null hypothesis HQ of Mann's
test. Therefore relying on Mann and Kendall we have

E[Sj] = 0 (6a)

n i (n i -l)(2n i +5) - z tj (tj-1)(2tj+5)
*1 

Var[Sj] =             ~            (6b)
lo

and the distribution of Sj is normal in the limit as nj  »  ». (tj is the extent of
12

a given tie in month i.) We then define S = z S.- and can derive its expec-i=l '
tation, variance and limit distribution.

12 
E[S ] = £ E[Sj] = 0 (7a)

12 12 12 
Var[S ] = £ Var[Sj] + £ £ Cov(SjS^) (7b)

Now Sj and SA (i * Ji) are functions of independent random variables (Sj = f (Xj), 
Sjl = f(Xfc) snd Xj O X^ = 0 because Xj and X^ are the data from months i and 
Jl respectively and all elements of X are independent) so Cov(SjS^) = 0. Thus 
E[S'] and Var[S'] are known simply from the nj and tj values. In addition S 1 
must be normal in the limit as nj  »  », i = 1,2,..., 12 being the sum of 12 distri­ 
butions which are normal in the limit.

For any data set it is possible to determine the exact distribution under, 
HO , of S 1 based on the nj and tj values. This can be done as a straightforward 
extension of the procedure for computing the exact distribution of S (equivalent 
to Sj in the Seasonal Kendall Test) as described by Kendall (1975). The exact 
distribution of S is arrived at by enumerating all possible permuations and com­ 
binations of Sj's for the 12 months, summing the Sj's, multiplying the indepen­ 
dent probabilities, and adding the( probabilities of all of the Sj sequences which 
sum to each particular value of S . Figure 2 shows the exact probabilities for 
the case of two years of monthly data (nj =2, i =1, 2,..., 12) with no ties and



2 YERRS OF 12 MONTHS

-14.0 -10.0 -6.0 10.0

Figure 2.--

14.0

Histogram of exact distribution of S under HQ for n^ = 2, 
i = 1, 2,..., 12. The curve is a normal distribution with 
zero and variance = Var[S ].

mean

CDor00   o 2 or .

3 YEflRS OF 12 MONTHS

Ni

-40.0 -32.0 -24.0 -16.0 -8.0 o.o 
S

6.0 16.0 24.0 32.0 40.0

Figure 3.--Histogram of exact distribution of S under HQ for n^ = 3,
i = 1, 2,..., 12. The curve is a normal distribution with mean 
zero and variance = Var[s'].



figure 3 shows it for three years of monthly data (n-j = 3, i =1, 2,...,12) 
with no ties. For both of these cases S may only take on even values and the 
probability of a given S value is depicted by a histogram class ranging from 
s'-l to s'+l.

Superimposed on each figure is the normal distribution with a mean of zero 
and variance of Var[S' ] where

12
Var[s] =

12 n i (nrl)(2n i +5)

18
(8)

Based on visual inspection one can see that even for records as short as 
three years t the normal approximation wi]l work quite well for estimating 
p = Prob[|S | _> s] (the probability that S will depart from zero by the amount 
s or more) provided that a continuity correction of one unit (toward zero) is 
made. For using the normal approximation we define the standard normal deviate 
1 as

S'-l

VVar(s')

S'+l

VVar(s')

if S > 0

if S = 0

if S < 0

(9)

The approximation is certainly adequate for n-j = 3 -V^. The worst dis­ 
agreement between the exact two-sided probability and the approximate prob­ 
ability occurs at |S'| =6 where the exact probability is 0.4530 and the normal 
approximation is 0.4510. Even for ni = 2 ^t\ , where the exact distribution could 
easily be used, the worst disagreement occurs at |S | =8 where the exact prob­ 
ability is 0.0386 and the approximation is 0.0433. Without the continuity 
correction the approximate probability would be 0.0209.

A possible modification of the Seasonal Kendall Test would involve using 
multiple observations for each month rather than limiting the time series to 
one observation per month. The observations occurring in the same month of the 
same year would be treated as tied observations with respect to their time of 
occurrence. In the former version of the Seasonal Kendall Test, ties are only 
possible in the magnitudes but not in the time index, in this modified version 
ties may occur in both. Kendall (1975) describes the modifications to his test 
necessary when both kinds of ties are possible. We have not explored the use 
of this modified test and it is not clear whether it would be preferable to use 
all available data or to take say, the medians of the multiple observations in 
each of the months and use them in the former version of the test.



It should be recognized that there may be instances in which some months 
exhibit strong evidence of upward trends and others exhibit strong evidence of 
downward trends (that is some S-j's are large positive values and others are 
large negative values) and yet the test result indicates no trend (S* close to 
zero). If one is interested in trends in specific months then it would be 
appropriate to use the Mann-Kendall test for each of the months and report the 
test results for each. The Seasonal Kendall test is specifically designed to 
provide a single summary statistic for the entire record and will not indicate 
when there are trends in opposing directions in different months.

For the example of the Klamath River (see fig. 1), the statistic S = -62 
and the Var [S 1 ] under the null hypothesis is 514. Thus the Z value is -2.69 
and the p value or two-sided significance level of the trend is 0.0072. That 
is p = Prob[|s'| >_ 62] = 0.0072.

Monte Carlo Experiment on the Seasonal Kendall Test

We have defined the Seasonal Kendall Test for trend, derived the mean and 
variance of the test statistic S 1 under the null hypothesis Hg, and verified 
that the normal distribution provides a good approximation to the exact distri­ 
bution of S when the continuity correction is used for records as short as 
three years. We now proceed to address some questions about the significance 
and power of the test as compared to other reasonable alternative tests for 
trend. In particular we explore the impacts of underlying distributions, of 
seasonality, and of serial dependence on the significance and power of the test. 
This is done through a Monte Carlo experiment. The purpose of this experiment 
is not to precisely quantify these effects but rather to provide insight on 
their general character. Thus no attempt is made to describe relationships 
between population characteristics, sample size, and the significance or power 
of the test. Given the problems of estimating the relevant population character­ 
istics from the small samples that are typically available, it is unclear that 
knowledge of such relationships would be particularly useful.

Before describing the Monte Carlo experiments some definitions should be 
given. The actual significance level of a test under some particular trend-free 
stochastic process is the probability that the test would indicate trend (fail 
to accept the null hypothesis of no trend) at the preselected nominal sig­ 
nificance level a.

We call a process trend free if the distributions of x-jj and x-j|< are 
identical for all i, j and k. The Seasonal Kendall Test was designed to be 
particularly powerful against the alternative of trend. One of the purposes 
of the Monte Carlo experiment is to evaluate the power of the test against 
other departures from HQ that are trend free, specifically serial dependence. 
One would prefer to use a test with minimal power against serial dependence 
such that the probability of rejecting the null hypothesis is close to a when 
there is serial dependence but no trend.



Power is the probability that the test would indicate trend (fail to accept 
the null hypothesis) when the generating process did, in fact, have trend. 
Clearly the power of a test will be a function of the stochastic process, trend 
magnitude, as well as record length.

The objectives to consider in selecting a test for use in an exploratory 
study (assuming that a has already been selected) are these: 1) The actual 
significance should be relatively close to a under stochastic processes thought 
to be relatively similar to the time series one expects to be testing and 2) the 
power for detecting trends should be relatively high compared to some alternative 
tests for processes in which trend exists and which are thought to be similar to 
the time series one expects to be testing.

The first of the two alternative tests for trend is based on linear 
regression. In this test the parameters of the regression equation (10) are 
estimated by ordinary least squares.

*1j = a + b   (j + ^) (10)
ii ^

The null hypothesis (HQ )is that the x^   are normal independent and identically 
distributed in time, wnich implies that b = 0. The test statistic used is T 
where,

r   \ m-2 T =       (11)

where m is the total number of observations and r is the product moment cor­ 

relation coefficient between x-jj and time (j + "127. The probability distri­ 
bution of T under HQ ' is the Student-t distribution with m-2 degrees of 
freedom (Kendall and Stuart, 1969, p. 387). This statistical test is denoted 
LR (linear regression).

The other test for trend considered is performed by deseasonalizing the 
data before regressing it against _time. In this procedure, called seasonal 
regression (SR), the sample mean (x-j) and sample standard deviation (s x j) are 
computed for each of the 12 months. The deseasonalized data are denoted u-jj 
where

«ij = ^T   d2)
S X1

The parameters of the equation

uii = a'+ b'   j (13)

10



I I
are estimated using ordinary least squares. The null hypothesis HQ for the
test is that the x-jj are normal, independent ( and that x-jj and xj|< are identically
distributed for all i, j, and k. Thus HQ ' implies that b' =0. The test

statistic is T' where T' = Vn(n-l)(n+l) b' where n is the number of years of 
record. T is distributed approximately as a Student-t random variable with 2n 
degrees of freedom. This approximation has been found to be adequate for n>_3 9 
and this is seen in the Monte Carlo experiment for n = 5, 10 and 20. The reason 
that the usual T statistic may not be used in this case is that the u-jj are not 
independent, even when the x-jj are independent (thereby reducing the number of 
degrees of freedom).

Six different trend-free stochastic processes are considered in this 
experiment. They are defined as follows:

1) Normal independent (NI)

x-jj = e-jj (14a)

2) Log-normal independent (LNI)

XTJ = exp [0.83   eij- - 0.35] - 1.0 (14b)

3) Normal independent with seasonal cycle (NIS)

Xij = (0.5)% eij + sin ^ + I   i) (14c)

4) Normal autoregressive (NAR)

x.jj = 0.2 [xij]L + 0.98 ' £i j (14d)

5) Normal autoregressive-moving average (1,1) (NARMA)

Xjj = 0.75 [xijJL + 0.97   e^- - 0.57 [ejj]|_ (14e)

6) Log-normal, autoregressive with seasonal cycle (LNARS)

x,, = (0.5)^   exp [0.22[x,,]. + 0.80 e,, - 0.35] - 0.71 (14f)
I J I J L- I J

The series are generated for i = 1,2,...12,; j = l,2,...,n, for n = 5, 10, 20.

   i ,  for i = 2, 3,...,12 
The notation[ -,  ]!_ = m Jj

"12,j-l for i = 1 is used.

The variable e-jj is a normal random variable with zero mean and unit variance. 
For all six processes, the x-jj have zero mean and unit variance over all months

11



taken together. However, for the NTS and LNARS processes, in any given month 
the variance is 0.5 and the mean takes on various values between -0.71 and 
+0.71.

In order to illustrate the characteristics of these processes, the average 
values of some sample statistics are given in table 1 for 100 repetitions of 
samples of 6 years in length. Also presented are average statistics for some 
historical time series of water-quality data from the U.S. Geological Survey 
NASQAN program. The record lengths for these series are 5 to 8 years. One 
note of caution in interpreting table 1 is that there may be a trend in some

Table l.--Mean value of sample statistics of deseasonalized (u-jj) data.

Data source Coefficient 
of skews

Process:

NI

LNI

NIS

NAR

NARMA

LNARS

NASQAN:

Dissol ved-solids 
concentration

Total phosphorus 
concentration

Dissol ved-solids 
transport

Total phosphorus 
transport

0.01

0.70

0.01

0.01

0.02

0.70

0.08

0.55

0.65

0.88

Lag 1 
correlation 
coefficient

-0.01

-0.00

-0.01

0.18

0.19

0.22

0.33

0.22

0.35

0.25

Lag 2 
correlation 
coefficient

-0.01

-0.01

-0.01

0.03

0.14

0.04

0.23

0.15

0.27

0.17

Number 
of 

series

100

100

100

100

100

100

81

128

81

128

Median 
series 
length 

in months

72

72

72

72

72

72

72

68

72

68

1-2



of the historic series and this would have the effect of causing correlation 
coefficients to have higher values than they would in the absence of trend. 
Thus, in a sense table 1 compares "apples and oranges" and yet the information 
does provide some insight on the character of water-quality data.

Each series generated was tested by each of the three tests (SK, LR and 
SR) using the nominal significance level (a) of 0.05. The number of repe­ 
titions for each process and record length was 500. The same series were 
modified by adding linear trend to create a new series v-jj

vi i = xn + 3(^ + j\   (15)

For each record length, eight different 3 values (trend slope) were used; for 
n = 5 the 3 values were 0.05 (0.05) 0.4, for n = 10 they were 0.02 (0.02) 0.16 
and for n = 20 they were 0.0065 (0.0065) 0.05. For each of these v-jj series, 
the three trend tests were applied. The results expressed in terms of frequency 
of detecting trends are shown in figures 4-6.

The Monte Carlo experiment is used to test the null hypothesis that the 
true frequency of rejection is a, against the alternative that it is not equal 
to a. The results in table 2 give a, the ratio of rejections to the number 
of trials, for those cases where no trend exists. The probability distribution 
of the number of rejections in 500 is binomial and the 95 percent confidence 
band, expressed in terms of a is [0.032, 0.068]. Those cases in which & falls 
outside this confidence band are noted in table 2. Also the power of the three 
tests are compared for each process, record length, and true slope. To simplify 
the comparison of tests, ,taT5Te^ presents the jrmnmum relativer power,>1X77 
of each test (K), for each record length (n), and process. u>(K) is defined

u>(K) = 100   max(D(.c,3) - D(K,3)) (16)
3,K

where D(ic,3) is the frequency of trend detection by test K, where *C{SK, LR, 
SR}, given the slope (3), record length (n) and the process. The following 
observations about the three tests may be made from the figures and two tables. 
In the succeeding discussion, "significant" should be taken to mean significant 
at the 5 percent level.

Results of the Monte Carlo Experiment

1. In all cases where a process satisfies the null hypothesis of a given 
test the a values fall within the 95 percent confidence band around the 
nominal significance level a (0.05). These cases are NI, LNI and NIS for 
the SK test; NI for the LR test; and NI and NIS for the SR test.

2. In addition to these cases the two regression based tests appear to 
be robust (in terms of significance) against a departure from normality. 
That is, for the LNI process (population skewness = 4.0) both the LR and 
SR test have a values within the 95 percent confidence band around a.

13
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3. For the non-seasonal dependent processes (NAR, NARMA) the actual sig­ 
nificance level of each of the three tests against trend appear to depart 
from the nominal significance level a. Specifically, the probability 
that the null hypothesis will be rejected is greater than the preselected 
probability a. In the case of the NAR process no definitive statement 
can be made about the relative magnitude of this discrepancy. However, 
for the NARMA process without trend, at n = 5, 10 and 20, in those trials 
where the SK and LR tests reached different conclusions (rejection or non- 
rejection), LR rejected the null hypothesis significantly more frequently 
than did SK. To illustrate this consider n = 5, in 364 trials both SK and 
LR failed to reject their null hypothesis, in 73 trials both reject their 
null hypothesis. Of the remaining 63 trials LR rejected its null hypo­ 
thesis 48 times and SK rejected its null hypothesis 15 times. The hypo­ 
thesis that rejections are equally likely where disagreements occur is 
rejected (p _< 0.001, two-sided). The results are similar for n = 10, 20 
with p = 0.010 and p = 0.024 respectively. Similarly, SR rejected sig­ 
nificantly more than SK at n = 5 and n = 10 (p = 0.044, p = 0.008, 
respectively).

Thus for the NARMA process the SK test has a slight advantage over 
the other two tests in the sense that it indicates the existence of trend 
less frequently when no trend exists. For the NAR process none of the 
three tests can be shown to be superior to the others in this sense.

4. For the LNARS (where both seasonality and dependence exist) the 
results show a values for the SK and SR tests lying above the 95 percent 
confidence band about a as a result of the dependence. For the LR test 
a is below the 95 percent confidence band, suggesting that the seasonality 
has a more profound effect on the significance than does the dependence.

5. Where the x-jj's satisfy the null hypothesis for all three tests, then 
the LR test appears to be most powerful followed by SR, followed by SK. 
However, in the two cases where HQ ' is violated but HQ is not (LNI and 
NTS), the violation is sufficient to make the LR test become a less power­ 
ful test for trend than the SK test. Similarly, in the one case where 
HO ' ( is violated (LNI), the violation is sufficient to make the SR test 
become a less powerful test for trend than the SK test.

6. For the NI process with trend the difference in the power of the 
three tests decreases with increasing record length. In fact when n = 20 
the difference in frequency of trend detection is no more than 6.2 percent 
over all 3 values considered. For the NIS process the difference in power 
between the SK and SR tests also decline with increasing record length. 
However, for the LNI process the difference in power between the SK and LR 
tests (or the SK and SR tests) increases with increasing record length.

7. For the two processes with dependence and no seasonality (NAR and 
NARMA) the relative power of the tests is not unlike what is observed for 
the NI process. The power curves are simply shifted upwards reflecting the 
inflated actual significance of all three tests when dependence exists.
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8. For the LNARS process the SK test is most powerful. The power of LR 
being severely reduced (in comparison) by seasonality and skewness and the 
power of SR being reduced by skewness.

In summary, if one knows that the data to be examined for trends are normal 
and non-seasonal, then LR is clearly the best of the three tests. If one knows 
that the data are normal but seasonal, then SR may be best (depending on the 
magnitude of the seasonality). In general we do not know about these character­ 
istics of the data. In general "No ... obvious indication advises the experi­ 
menter that a parametric assumption has been violated. Of course he may apply

Table 2.--Observed a values where a is defined as the frequency with 
which trends are indicated where none exists. The "+" indi­ 
cates that a is above the 95 percent confidence band around 
the nominal a (0.05) and the "-" indicates that a is below 
this confidence band.

Process n SK LR SR

NI 5 0.044 0.040 0.044
NI 10 0.052 0.050 0.040
NI 20 0.046 0.034 0.034

LNI 5 0.054 0.044 0.040
LNI 10 0.046 0.048 0.046
LNI 20 0.040 0.040 0.058

NIS 5 0.044 0.008- 0.044
NIS 10 0.052 0.006- 0.040
NIS 20 0.032 0.004- 0.044

NAR 5 0.078+ 0.090+ 0.090+
NAR 10 0.098+ 0.088+ 0.094+
NAR 20 0.070+ 0.082+ 0.082+

NARMA 5 0.176+ 0.242+ 0.204+
NARMA 10 0.186+ 0.222+ 0.220+
NARMA 20 0.200+ 0.223+ 0.216+

LNARS 5 0.102+ 0.018- 0.104+
LNARS 10 0.098+ 0.016- 0.108+
LNARS 20 0.092+ 0.022- 0.106+

18



time-consuming tests for normality or homogeneity to the obtained data, but such 
tests are rather unsatisfactory. They are unlikely to detect any but the most 
extreme violations when samples are small, and they are almost certain to detect 
the most trivially slight violations when samples are very large", Bradley (1968, 
p. 23). Given that our data analysis has shown departure from normality and the 
presence of seasonality to be common features of water-quality data coupled with 
the rather small loss of power assciated with using the SK test where the LR 
test would be most powerful, we would argue for the use of the Seasonal Kendall 
Test as an exploratory test for trend.

Table 3.--Minimum relative power w(K), expressed in percent. An entry 
of 0.0 indicates test is most powerful at all values of 3-

Process n SK LR SR

NI
NI
NI

LNI
LNI
LNI

NIS
NIS
NIS

NAR
NAR
NAR

NARMA
NARMA
NARMA

LNARS
LNARS
LNARS

5
10
20

5
10
20

5
10
20

5
10
20

5
10
20

5
10
20

16.8
9.0
6.2

0.0
0.0
0.0

10.6
6.4
5.2

14.6
6.0
4.2

12.4
6.6
4.8

0.0
0.0
0.0

0.0
0.0
0.8

29.2
38.4
42.2

35.0
38.6
37.2

0.0
0.0
1.4

0.0
0.0
0.8

62.8
68.0
66.0

8.8
3.2
1.2

8.0
22.4
29.0

0.0
0.0
0.0

8.6
3.2
1.2

6.2
3.4
1.2

6.2
21.0
25.8
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None of the three tests considered here is designed to distinguish between 
trend and the long-term variations typical of trend-free dependent processes, 
although the SK test appears to have a slightly better performance than do the 
other tests under a long memory ARMA process. There is certainly a need for 
a trend test which is robust against seasonal behavior, departures from normal­ 
ity, and dependence. The Seasonal Kendall Test can only be regarded as robust 
against the former two and not the latter.

The Seasonal Kendall Slope Estimator

In addition to identifying time series that exhibit trend, it may be 
desirable for some applications to estimate the magnitude of such a trend. We 
have chosen to express this magnitude as a slope (change per unit time) but 
this does not imply any belief that the trend takes the form of a linear trend 
in the process mean. In an overview of many stations, one may wish to identify 
those stations for which trend slope is large with respect to the mean value. 
One may also want to identify those stations where extrapolation of an existing 
trend would suggest that frequent violations of some relevant water-quality 
criterion might occur in the near future. The estimator we define is an exten­ 
sion (to account for seasonal ity) of one proposed by Theil (1950) and by Sen 
(1968).

We define the Seasonal Kendall slope estimator (B) by the following
X-j -j   X-j |^

computational algorithm. Compute d-jjk =   :      for all (x-jj, x-j|<) pairs
J ~ K

i = 1,2,..., 12; 1 _< k < j _< ni. The slope estimator B is the median of these 
djjk values. The estimator B is related to the Seasonal Kendall Test statistic 
S 1 such that

if s' > 0 then B >_ 0 (B > 0 if one or fewer d i - k = 0) 

and if s' < 0 then B _< 0 (B < 0 if one or fewer d = 0)

This is because S 
number of negative

is equivalent to the number of positive 
's and B is the median of these

minus the

By using the median of these individual slope (djjk) values, the estimate 
B is quite resistant to the effect of extreme values in the data. It is also 
unaffected by seasonal ity because the slopes are always computed between values 
that are multiples of 12 months apart.

For the Klamath River example given above, the B value is -0.005 mg/L per 
year. For comparison, linear regression gives a slope (b) value of -0.014 mg/L. 
For skewed data, such as the Klamath, the finding that |b|>|B| is typical. The 
estimate b is influenced by the extremes of the data much more than is B.
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Monte Carlo Experiment on the Seasonal Kendall Slope Estimator

To evaluate the precision and bias of this estimate, B is compared with 
the estimate b from linear regression (eq. 10) and also an estimate denoted b* 
which arises from seasonal regression (eq. 13). Specifically

(17)

The estimates B, b, and b* are computed for 500 series of the six generating 
processes with a true slope (3) of 1.0 per year for record length of 5 and 
10 years and 100 series of 20 years.

Table 4 provides summary statistics of this Monte Carlo experiment: The 
mean error for the three estimates y(*h the standard deviation £( ); and 
the relative standard deviation

+ ( ) =
min (a(B), &(b), a(b*)}

The Monte Carlo experiment is used, in part, to test the hypotheses that 
the various slope estimators are unbiased (that is, E[B] = 3, E[b] = 3» 
E[b*] = 3) for all six processes and 3 record lengths. The estimator B can be 
shown analytically to be unbiased for all six cases. The distribution of the 
d-jjk's is symmetric with mean value 3. The expectation of the sample median of 
a symmetric distribution is equal to the mean of the distribution, thus B (the 
median of the dij|<) has expectation 3- This holds for any situation where 
observations a multiple of 12 months apart are distributed identically except 
for a shift equal to the product of 3 and time (in years). The estimate b is 
significantly biased (at the 5 percent level) for NIS at n = 5 and 10 and for 
LNARS at n = 5, 10 and 20. This bias is related to the phase shift in the

TT
generating equations 14c and 14f. If the phase shift were  (or more generally 

  ± -k for k integer) rather than , then b would be unbiased. But for any

other phase shift it will be biased and may be much more biased (for example if 
the phase shift were zero). The estimator b* is significantly biased for the 
NI and LNI processes at n = 5. Whether there are conditions in which it is an 
unbiased estimator is an open question.

Concerning the precision of the estimators, the results show that for all 
of the normal processes (NI, NIS, NAR, NARMA) and all record lengths (n = 5, 10 
and 20) that 2r(b) < a(b*) < a(B). (With one exception: NARMA, n = 20 in which 
case all three are nearly equal.) For these processes, as the record length 
increases, the ratio of a(B)/a(b*) decreases. For processes with skewness 
(LNI and LNARS), a(B) < a(b) < a(b*) for all record lengths.
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Given a desire to find a method of slope estimation that is unbiased and 
has a lower variance in situations where seasonality, skewness and serial cor­ 
relation may be present, the Seasonal Kendall Slope Estimator (B) appears to be 
an appropriate choice. In no case does it perform much worse than the alter­ 
native methods and in some cases it performs a great deal better.

Flow Adjustment

It is well known that in many cases constituent concentrations are corre­ 
lated with river discharge (see for example Langbein and Dawdy, 1964; Johnson 
and others, 1969; Borman and others, 1974; Smith and others, 1981). The causes 
of the relationship and the particular functional form that might be used to 
characterize it vary from site to site and constituent to constituent.

In some instances constituent loading rates are relatively constant because 
the main source of the constituent is a point-source discharge or the natural 
base flow supplied by soil moisture or aquifer storage. In such cases the 
effect of increased discharge (due to precipitation, snowmelt or reservoir 
release) is a dilution effect. The resulting relationship may be characterized 
by relationships such as

1
X = Xi + X? - + e 1 * Q

or
1X = \i + \2 ~    -+ e 

1 + X 3 Q

where X is concentration, Q is discharge, E is an error term with zero mean and 
\l \2 X 3 are coefficients (Xj >_Q, \2 2. 0» X 3 * 0)-

In other instances the constituent load may increase dramatically with an 
increase in discharge because of washoff during storm runoff or because the con­ 
stituent is primarily transported in a suspended state (adsorbed to particles) 
and suspended sediment loads (and concentrations) increase with discharge. The 
resulting relationship may be characterized by relationships such as

X = Xj + X 2 Q + X 3 Q2 +

where X 3 >^ 0-

Analysis of the flow versus concentration relationship can be a useful 
addition to the examination of trends in water quality. Consider, for example, 
the Klamath River data. For the period of record (1972 - 1979) many of the 
samples of phosphorus in the earlier years occurred at higher discharges than 
many of those in the later part of the record. In fact a Seasonal Kendall Test 
on these discharge values indicates a downward trend with p = 0.14. Regressing 
phosphorus concentration versus discharge shows that they are highly correlated 
(see fig. 7). Given these three findings (1) the Seasonal Kendall Test on the 
concentration data indicated a highly significant downward trend, (2) the dis­ 
charges at which the observations were made show a downward trend as well
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(although not significant) and (3) the discharge and concentration are strongly 
and positively correlated; then it may be that the perceived trend in concen­ 
tration may be considered to be a result of the particular history of discharge 
and not a consequence of any underlying change in the process by which phosphorus 
enters and is carried by the river.

In general, one would like to explore the two possibilities that (1) the 
perceived trend in concentration is an artifact of the particular record of 
discharges observed or (2) the perceived trend indicates that some change has 
taken place in the river basin such that the discharge versus concentration 
relationship has changed over time (that is E [X|Q] has changed). Conversely 
one may also wish to explore the possibility that a "no trend" result may have 
occurred (1) even though the relationship has changed but the flow record has 
masked the effect or (2) because the relationship itself has not changed.

To explore these possibilities we have applied the following residuals 
analysis procedure.

1. Use regression to find the "best fit" relationship trying 
various functional forms

x = f(Q)

where x is the estimated concentration
and f(Q)is some function of discharge (Q)

2. Given that a significant relationship exists, compute the 
time series of flow-adjusted concentration (FAC).

A
1.1. .   V     _ V    W 1J X 1J X 1J

where w-jj is the FAC month i, year j
x-jj is the actual concentration, month i, year j

3. Then, apply the Seasonal Kendall Test for trend and slope 
estimator to the time series of FAC values (WTJ).

It should be noted that the FAC time series may be seasonal and skewed, 
and thus the use of the Seasonal Kendall procedures, as opposed to regression, 
for exploring trends is as appropriate for the w-jj series as the X-M series. 
Of the 308 NASQAN stations discussed above there were 204 stations for which 
good (significant at the 10 percent level) flow-adjustment equations could 
be fit for total phosphorus concentration data. Of these 204 there were 99 
stations for which the raw (x-jj) data showed significant seasonality (based 
on the Kruskal-Wallis test for identical distributions a = 0.05) and at 55 
of the 204 stations the flow-adjusted (w-jj) data showed significant season- 
ality. Similarly, for total dissolved solids concentration data, of 246 
stations with good flow-adjustment equations, there were 111 stations which 
showed seasonality in the concentration data and 68 which showed seasonality 
in flow-adjusted concentration data. Thus for these stations and constutients, 
in some cases seasonality is effectively removed by flow adjustment but there
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are a substantial number where even after flow adjustment the seasonality 
remains. Considering those stations with good flow-adjustment relationships 
for total phosphorus and 60 or more monthly values of flow-adjusted total phos­ 
phorus concentrations (there are 98 such stations), the average sample skewness 
of the deseasonalized x-jj's is 0.56 and for the deseasonalized w-jj's it is 0.28 
(average record length is 68 months). For dissolved solids the average sample 
skew of both the deseasonalized x-jj's and w-jj's are 0.04 and 0.09 respectively. 
Thus for total phosphorus there is a tendency towards reduced skewness in the 
flow-adjusted data but there remain a substantial number of stations (22 out of 
98) for which skewness coefficients exceed 0.5 (for a sample size of 60 this is 
the 95 percent one-tailed confidence limit for skewness coefficients for normal 
populations).

The use of the parametric procedure, linear regression, in this process is 
not entirely satisfactory for the reasons suggested in the previous sections 
of the paper. However, in this case linear regression is not being used for 
statistical testing but rather for the removal of variance that can be explained 
by an exogenous variable, discharge. It would, perhaps, be desirable to find a 
more resistant estimate of this relationship of concentration and discharge. 
There are some other methods for identifying time trends in the concentration- 
discharge relationship. These include multiple regression with time-varying 
coefficients (interaction models), and the recursive residuals approach sug­ 
gested by Brown et al., (1975). Exploration of the robustness and resistance 
of the flow-adjustment method proposed here or the other methods suggested above 
is beyond the scope of this paper.

For the Klamath River phosphorus data the w-jj series had a sample standard 
deviation of 0.07 mg/L and a sample coefficient of skew of 0.74. The Seasonal 
Kendall Test results are (S = -18, Z = -0.78, p = 0.43) and the Seasonal Kendall 
Slope Estimate (B) is -0.002 mg/L per year (see fig. 8). Thus one may conclude 
that although there was a highly significant (p = 0.007) downward trend in con­ 
centrations over this 8-year period, there is no real indication of a change in 
the relationship between concentration and discharge (or, stated more broadly, 
no indication of a change in the processes by which phosphorus is supplied to 
or transported in the river).

CONCLUSION

The methods presented in this paper (the Seasonal Kendall Test for trend, 
the Seasonal Kendall Slope Estimator, and flow adjustment coupled with the 
Seasonal Kendall Test) are intended to be exploratory methods for identifying 
and quantifying changes in water-quality time series. Together they provide 
means of identifying data sets where significant monotonic changes are occur­ 
ring in the water-quality variables of interest or where changes are occurring 
in the relationship between the variable and discharge. In addition, they pro­ 
vide an estimate of the magnitude of the trend over the period of record. These 
techniques are not a substitute for individualized analysis of the processes 
occurring at a station and in its basin. They are also not a substitute for 
visual examination of plots of the time series and other associated time series. 
It should be noted, however, that where considerable seasonality and or skewness
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is present, it is not uncommon for subjective examination of the data to lead 
to substantially different conclusions than these procedures lead. This is 
probably due to the tendency for the observer to concentrate more on the extreme 
values of the series rather than on more subtle but regular trends in the bulk 
of the values nearer to the mean. As the number and length of water-quality 
time series grows, it is desirable to have a set of objective automatic proce­ 
dures that are are reasonably powerful over a wide range of situations for 
identifying trends. We believe that the methods presented are useful and 
appropriate for this purpose.
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